作者:戴璞微, 潘斌著
索书号:TP181/10055
馆藏地:
校本部馆 - 科技新书展示架(3楼)
顺德校区馆 - 顺德科技新书展示架(3楼)
编辑推荐
1.与周志华编写的《机器学习》相比,本书多了对算法的数学原理详细严谨的推导。
2.与李锐翻译的《机器学习实战》相比,本书多了用面向对象思想将算法模块化,并且书中代码在Python 3 环境下运行。
3.为了照顾初学者,本书补充了全书涉及的高等数学、线性代数、概率论与数理统计、Jessen不等式等数学基础知识。
内容简介
机器学习是一门涉及高等数学、线性代数、概率论、统计学和运筹学等领域的交叉学科。机器学习的基础就是数学,这也就要求学习者要有良好的数学基础。为了降低机器学习的学习门槛,本书深入浅出地对机器学习算法的数学原理进行了严谨的推导;并利用Python 3对各种机器学习算法进行复现,还利用介绍的算法在相应数据集上进行实战。本书主要内容包括机器学习及其数学基础;线性回归、局部加权线性回归两种回归算法;Logistic回归、Softmax回归和BP神经网络3种分类算法;模型评估与优化;K-Means聚类算法、高斯混合模型两种聚类算法和一种降维算法——主成分分析。
《机器学习入门:基于数学原理的Python实战》理论性与实用性兼备,既可作为初学者的入门书籍,也可作为求职者的面试宝典,更可作为职场人士转岗的实用手册。本书适合需要全面学习机器学习算法的初学者、希望掌握机器学习算法数学理论的程序员、想转行从事机器学习算法的专业人员、对机器学习算法兴趣浓厚的人员、专业培训机构学员和希望提高Python编程水平的程序员。
作者简介
戴璞微,中国民航大学硕士,CSDN博客专家。曾获得全国大学生数学竞赛国家一等奖、北美数学建模二等奖,参与国家自然科学基金项目1项。对计算机视觉、机器学习和深度学习有深入研究。
潘斌,浙江大学应用数学系博士,现任辽宁石油化工大学理学院副院长。2018年入选辽宁省“兴辽英才计划”青年拔尖人才,2016年主持国家自然科学基金青年基金项目1项;2015年主持辽宁省自然科学基金项目1项;2016年主持浙江大学CAD&CG国家重点实验室开放课题2项。近年来,指导本科生获全国大学生数学建模竞赛国家一等奖。
周一至周日 8:00-22:00
周一至周日 8:00-22:00
电话:020-62789014(本部)
0757-29985219(顺德)
电话:020-61648543
电话:020-61648053
电话:020-62789012
电话:020-61648051
电话:020-62789012
邮政编码:510515
邮政编码:528305
当前IP地址:3.145.34.237